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In most real or numerically simulated turbulent flows, the energy dissipated at small
scales is equal to that injected at very large scales, which are anisotropic. Despite this
injection-scale anisotropy, one generally expects the inertial-range scales to be locally
isotropic. For moderate Reynolds numbers, the isotropic relations between second-
order and third-order moments for temperature (Yaglom’s equation) or velocity
increments (Kolmogorov’s equation) are not respected, reflecting a non-negligible
correlation between the scales responsible for the injection, the transfer and the
dissipation of energy. In order to shed some light on the influence of the large
scales on inertial-range properties, a generalization of Yaglom’s equation is deduced
and tested, in heated grid turbulence (Rλ = 66). In this case, the main phenomenon
responsible for the non-universal inertial-range behaviour is the non-stationarity of
the second-order moments, acting as a negative production term.

1. Introduction
The traditional concept of the energy cascade in turbulent flows offers a simple

scenario for the transfer from large injection scales down to small dissipative scales.
In fact, the energy injection in the large scales is a necessary ‘source’ for the transfer
and dissipation through all the scales. The way energy is injected is specific to each
flow and mixing configuration, and is arguably not important to a certain range of
scales, referred to as the inertial range (IR). Therefore, one expects the IR to be
locally isotropic, at least at very large Reynolds numbers, as explained in Monin
& Yaglom (1975). These considerations are central to the well-known Kolmogorov
theory (K41). Similar considerations apply to a passive scalar field, as it was ar-
gued in Oboukhov (1949) and Corrsin (1951). In the context of isotropy, a relatively
simple relation was obtained by Yaglom (Yaglom 1949), see also Monin & Ya-
glom (1975), between the second-order moment of the temperature increment ∆θ =
θ(x1 + r)− θ(x1) and the third-order mixed moment 〈∆u1(∆θ)2〉 (the angular brackets
denote time averaging), where ∆u1 is the longitudinal velocity increment. Yaglom’s
equation is

4
3
〈εθ〉r = −〈∆u1(∆θ)2〉+ 2k

d

dr
〈(∆θ)2〉, (1.1)
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where 〈εθ〉 = k
(〈θ2

,1〉+ 〈θ2
,2〉+ 〈θ2

,3〉
)

is the mean temperature dissipation rate, k is the
molecular diffusivity, and θ,i = ∂θ/∂xi is the spatial derivative of θ in the ith direction
(x1 is the streamwise direction). Equation (1.1) is of capital importance to turbulence
research, being the only relation which is directly deduced from the heat transport
equation. Reasonably good agreement with (1.1) is generally obtained (e.g. Monin &
Yaglom 1975 and Antonia, Chambers & Browne 1983) for small and intermediate
scales, the level of agreement for the IR scales being obviously improved when the
Reynolds number increases.

Thus, local isotropy and (1.1) should be satisfied in the IR of any flow, irrespectively
of the large-scale properties or the energy injection mode. A distinction can however
be made between continuous injection and decaying flows.

(a) Continuous-injection flows. This class includes flows where the injection occurs
through large-scale velocity and temperature gradients. Typical examples are the
slightly heated boundary layer, the swirling flow between two heated (or cooled)
disks, and the direct numerical simulations (DNS) of an isotropic velocity field
where the temperature dissipation rate is fed by a large-scale mean-temperature
gradient. The property common to this flow category is the presence of a large-
scale mean temperature gradient: G. The term ‘continuous’ is supported by the
fact that G is stationary in time, leading to the stationarity of all other statistical
quantities. Experiments (Mestayer 1982; Sreenivasan 1991; Sreenivasan & Tavoularis
1980) and simulations (Holzer & Siggia 1994 and Pumir 1994a) have shown that
the role of G is important down to the very small scales, resulting in a non-zero
temperature-derivative skewness at least in the direction parallel to G. This violates
local isotropy.

(b) Decaying flows. The initial condition plays a major role. Subsequent to the
energy injection, the flow decays until the energy is totally dissipated. This category
includes

(i) Grid turbulence. This is the simplest flow, providing a close approximation to
isotropy. Note that there have been studies of grid turbulence in combination with
an initial condition for the passive scalar field such as a mean temperature gradient,
as it was done in Budwig, Tavoularis & Corrsin (1985), Tong & Warhaft (1994) and
Mydlarski & Warhaft (1998). This increases the complexity, even though it preserves
the characteristics of a decaying flow entirely.

(ii) Jets and wakes. These are relatively more complex flows. Along the axis or
plane of symmetry, there is both streamwise decay and a relatively strong radial or
transverse turbulent diffusion.
Grid turbulence with quasi-isotropic initial conditions seems to be the simplest case of
freely decaying flows. Isotropy of small scales is generally verified, although there may
be exceptions, to be discussed later, associated with the injection mode. Strategies can
be used to improve the isotropy of grid turbulence, either experimentally, as seen in
Comte-Bellot & Corrsin (1966) or in Antonia et al. (1978), or numerically in Boratav
& Pelz (1994).

While Sreenivasan (1996) has already distinguished between grid turbulence and
turbulent shear flows in the context of the relative spectral scalings of velocity
and temperature, a formal distinction has yet to be made. The aim of the present
paper is to identify, both qualitatively and quantitatively, the origin of the non-balance
between the different terms in (1.1), for relatively small Reynolds numbers, in decaying
thermal grid turbulence. We will briefly describe the experimental set-up in § 2. The
verification of the generalized form of Yaglom’s equation, where the contribution
from an additional large-scale injection term is included, is presented in § 3.
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2. Experimental details
Measurements were made on the centreline of the working section (350 mm ×

350 mm, 2.4 m long) of a non-return blower-type wind tunnel, downstream of a
biplane grid, in the range 20 6 x1/M 6 80 (M is the mesh size of the grid). The mean
longitudinal velocity of the flow, U1, was 7 ms−1. A square mesh (M = 24.76 mm, with
4.76 mm × 4.76 mm square rods) grid, with a solidity of 0.35, was used.

A mandoline was used to heat the flow in a way similar to Warhaft & Lumley (1978).
For all the measurements, the mandoline was fixed at 1.5M downstream of the grid.
It was constructed from fine Chromel-A wires of 0.5 mm diameter. The mandoline
comprised two parts separated by 15 mm in the streamwise direction: the wires were
horizontal in one and vertical in the other. Each part had a resistance of about 22Ω
and was heated by a power supply with a total power consumption of about 2 kW for
both. The mean temperature ∆T relative to ambient was about 3 K in the tunnel. The
wire separation in each part was 24.76 mm, i.e. the same as M. To prevent sagging
due to thermal expansion, small springs were used to keep each wire under tension.

Simultaneous measurements of the three components of velocity and temperature
were conducted, using a probe comprising 2 X-wires and a cold wire. One X-wire
was in the (x1, x2)-plane, and the other one was in the (x1, x3)-plane. To avoid
contamination of the cold wire measurements from the hot wires, the cold wire was
located 1 mm below the centre of the two X-wires and shifted 0.5 mm upstream. The
probe was calibrated at the centreline of the tunnel against a Pitot tube connected
to a MKS baratron pressure transducer (the least count is 0.01 mm H2O). The yaw
calibration was performed over a range of ±20◦ in both the (x1, x2)- and (x1, x3)-
planes.

The wires were etched from Wollaston Pt–10% Rh . The active length of the cold
wire was about 800dw (dw = 0.63 µm is the wire diameter). For the hot wires, the
diameter was dw = 2.5 µm, the length of the active part being 200dw . The hot wires
were operated with in-house constant-temperature anemometers with an overheat
ratio of 1.5. The cold wire was operated with a constant-current (0.1 mA) circuit,
also built in-house. The output signals from the constant-current and constant-
temperature anemometers were passed through buck and gain circuits, and low-pass
filtered at a cut-off frequency fc close to fK , the Kolmogorov frequency (estimated
via fK = U1/2πη, where η is the Kolmogorov length scale). The cut-off frequency is
therefore a function of the position behind the grid: it varies from 5 kHz at x1/M = 20
to 1.6 kHz at x1/M = 80. The signals were then digitized into a personal computer
using a 12 bit A/D converter at a sampling frequency of 2fc. The record duration
was 52 s. The data were analysed on a VAX 780 computer.

The instantaneous velocity signals were corrected for the influence of temperature
fluctuations using the following relation:

E2Tw − T1

Tw − T = A+ BUn,

where A, B and n are the calibration constants at ambient temperature, T1; Tw is the
hot-wire temperature, T is the instantaneous fluid temperature measured by the cold
wire; E and U are the instantaneous voltage and longitudinal velocity (≡ U1 + u1),
respectively.

Velocity and temperature increments were computed using Taylor’s hypothesis.
This should be satisfactory since the local turbulence intensity u′1/U1 is less than 2%
in the present experiment (the prime denotes the r.m.s. value).



362 L. Danaila, F. Anselmet, T. Zhou and R. A. Antonia

The Taylor microscale Reynolds number, defined as Rλ = λu1
u′1/ν ≈ 66, where

λ2
u1

= u′21 /〈(∂u1/∂x1)
2〉, is approximately constant in x1. The components of the

energy dissipation rate, measured in a separate experiment, satisfy isotropy very well
(within ±10%), after adequate corrections are applied (Antonia, Zhou & Zhu 1998).
Local isotropy of the temperature field has been verified in this flow in a previous
investigation (Danaila et al. 1999). The temperature field satisfies homogeneity quite
closely. ∆T is constant to within 1% in all directions, whereas 〈θ2〉, the temperature
variance, is uniform within 10% in the directions normal to the stream. The probability
density functions of temperature and velocity increments are symmetrical about the
ordinate, irrespectively of the scale. The p.d.f.s of the three temperature derivatives
are nearly identical. Consistently, the skewness of the temperature derivative is almost
zero (≈ 0.01), for i = 1, 2 and 3. This is evidence that the small-scale structure of the
dynamic and passive scalar fields is nearly isotropic. Note here that in a continuous
injection flow, the presence of G leads to a non-zero temperature-derivative skewness,
independently of Rλ, as emphasized by Sreenivasan (1991) or Pumir (1994b).

In grid turbulence, isotropy and homogeneity are usually well verified in a plane
normal to the stream. Such good agreement is not expected in the streamwise
direction, reflecting the role of the non-stationarity. The decay of different quantities
such as velocity and temperature variances 〈u2

1〉, 〈u2
2〉, 〈u2

3〉, 〈θ2〉 is characterized by a
power-law of the type

〈u2
1〉 ≈

(x1

M

)−mu1
.

Magnitudes of mu1, mu2, mu3 and mθ have been previously reported by Comte-Bellot
& Corrsin (1966) and Warhaft & Lumley (1978). They provide a basis of comparison
between the passive scalar behaviour and that of any of the velocity components. In
the present flow, mθ ≈ 1.42 is much closer to mu2 ≈ mu3 ≈ 1.39, than to mu1 ≈ 1.3,
indicating that the decay of θ is similar to that of u2 or u3. The decay of the temperature
fluctuating field does not depend on the temperature ∆T , but it seems to depend
strongly on the injection mode: the grid (and mandoline) mesh M and the distance
between the grid and the mandoline, as investigated by Sreenivasan et al. (1980) or
Durbin (1982). Also, the decay of the temperature variance can be simplified to

U1

d

dx1

〈θ2〉/2 = −〈εθ〉, (2.1)

which has already been verified within ±10% (Danaila et al. 1999). This equation is
obtained using the local homogeneity assumption, only. Local isotropy is not required
here. In the following discussion, this relation is important for the development of
our generalized Yaglom’s equation. The results presented hereafter are obtained using
the approximation 〈εθ〉 = 〈εθ〉iso = 3k〈(∂θ/∂x1)

2〉.
The conclusion here is that the small-scale passive scalar field in grid turbulence

verifies isotropy and symmetry quite satisfactorily. Note however that other quantities,
such as the correlation coefficients between the increments of temperature and any
of the velocity components, are not zero, as they should be if isotropy were strictly
verified. The non-zero values of these quantities reflect the initial coupling between
velocity and temperature fields.

3. Generalized form of Yaglom’s equation
In this Section, we will analyse in great detail Yaglom’s equation (1.1). In what

follows, we use the dimensionless separation r∗, where the superscript ∗ denotes
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Figure 1. Comparison between the two terms in (3.1), at x1/M = 70: �, A (computed using
measurements), the dotted line is a polynomial least-squares fit. The solid horizontal line represents
4
3
. 4, The sum of the turbulent transport term and the dissipative term in (1.1).

normalization by the Kolmogorov length scale, η =
(
ν3/〈ε〉)1/4

(where ν is the
kinematic viscosity of air and 〈ε〉 is the mean turbulent energy dissipation rate which
was determined in a separate experiment with the same experimental conditions,
using both isotropy and the decay rate of the mean turbulent kinetic energy), the

Kolmogorov velocity scale uK =
(
ν〈ε〉)1/4

or the temperature scale θK = (〈εθ〉η/uK)1/2.
The magnitude of η depends on x1, varying from 0.22 mm at x1/M = 20 to 0.50 mm
at x1/M = 80.

In the IR, (1.1) reduces, in non-dimensional form, to

4
3

= −〈(∆u∗1)(∆θ∗)2〉/r∗. (3.1)

Figure 1 shows the balance between the right-hand side of (3.1), denoted for
simplicity by A, and the constant 4

3
. At this relatively small Reynolds number,

the balance is clearly not satisfied. The turbulent transport does not attain the
level corresponding to that for total dissipation, presumably because the correlation
between large and small scales is not negligible. In contrast, the total contribution
from A and the dissipative term in (1.1), denoted by B, seems to reach 4

3
, but

only for r∗ 6 5. This is required as a consequence of the definition of 〈εθ〉 and
our observation that small-scale isotropy is satisfied for second-order moments, as
explained in Antonia et al. (1983).

Note here that the effect of the small Reynolds number on the second-order
moments (or spectra) has already been investigated for different flows, by Sreenivasan
(1996). On the other hand, the Reynolds number effect was also investigated for the
third-order moments, in active grid turbulence by Mydlarski & Warhaft (1998) and
in numerical simulations of turbulent flows by Yeung & Zhou (1997). The constant
4
3

(or its velocity counterpart 4
5
) is apparently only obtained at a minimum value of

Rλ of about 400 (Mydlarski & Warhaft 1998).
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To our knowledge, there has been no previous study aimed at understanding the
physical significance of the difference between the two terms of (3.1). To this end, we
carefully reconsider the derivation of (1.1), as presented in Monin & Yaglom (1975).
We start with the heat transport equation, at x:

∂θ

∂t
+ u · ∇θ = k∇2θ, (3.2)

where u = (u1, u2, u3) is the fluctuating velocity field. Since the aim is to investigate the
behaviour of the mixed velocity–temperature moments, using an increment r, we now
write the same equation at x+ r. All the quantities at this location are designated by
the superscript +:

∂θ+

∂t
+ u+ · ∇+θ+ = k∇2+θ+. (3.3)

After multiplying (3.2) by θ+, adding it to relation (3.3) multiplied by θ, and averaging,
we obtain

∂

∂t
〈θθ+〉 − 2∇r〈uθθ+〉 = 2k∇2

r 〈θθ+〉. (3.4)

Equation (3.4) was in fact originally derived by Corrsin (1951). With the further
use of local homogeneity and isotropy, the gradient and Laplacian operators involved
in (3.4) can be expressed using only the modulus r of r:

∇r =
2

r
+
∂

∂r
, ∇2

r =

[
2

r
+
∂

∂r

]
∂

∂r
. (3.5)

Substituting (3.5) into (3.4),

∂

∂t
〈θθ+〉 = 2

[
2

r
+
∂

∂r

] [
〈u1θθ

+〉+ k
∂

∂r
〈θθ+〉

]
. (3.6)

Using local homogeneity and isotropy,

〈θθ+〉 = 〈θ2〉 − 1
2
〈(∆θ)2〉,

〈u1θθ
+〉 = 1

4
〈∆u1(∆θ)2〉.

}
(3.7)

Substituting (3.7) into (3.6), where the previously verified relation (2.1) was used,
multiplying by r2, integrating with respect to r and dividing by r2, we finally obtain

− 4
3
〈εθ〉r − 1

r2

∫ r

0

y2 ∂

∂t
〈(∆θ)2〉dy = 〈∆u1(∆θ)2〉 − 2k

d

dr
〈(∆θ)2〉, (3.8)

where y is a ‘dummy’ variable here identifiable with the separation. The temperature
second-order moments used in the integral are computed using a separation y, the
modulus of the vector y, i.e.

〈(∆θ)2〉 = 〈(θ(x+ y)− θ(x))2〉.
For simplicity, we keep the same notation for the temperature second-order moments.

By comparison to (1.1), equation (3.8) has one additional term:

S = − 1

r2

∫ r

0

y2 ∂

∂t
〈(∆θ)2〉dy, (3.9)

which results simply from the presence of the second-order moment in relation (3.7).
The operators which act on the temperature second-order moments in order to obtain
(3.9) are the same as those which are applied to (3.6) for obtaining (3.8).
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The supplementary term S reflects the influence of the time derivative of 〈(∆θ)2〉.
This derivative can be evaluated using Taylor’s hypothesis, since 〈(∆θ)2〉 was measured
at several positions downstream of the grid. Specifically, S is evaluated from the
relation

S = −U1

r2

∫ r

0

y2 ∂

∂x1

〈(∆θ)2〉dy.

We comment here on a subtle aspect of grid turbulence, regarding homogeneity.
This flow is not globally homogeneous because, along the mean flow direction, some
quantities, such as 〈θ2〉, are not constant. The characteristic scale of this decay has a
magnitude of about 10M, much larger than the characteristic scale of the mixing (for
instance, the injection scale is about M/2 ≈ 60η). This significant difference allows us
to characterize the mixing in grid turbulence as

locally homogeneous at the characteristic scales of the mixing, where the operators
∇r and ∇2

r act – the term ‘local’ homogeneity (or isotropy), already used in Monin &
Yaglom (1975) and rediscussed by Hill (1997), means that this concept is valid over a
limited range of scales, those which are much smaller than the large injection scales;

globally non-homogeneous at large scales (≈ 10M), where the decay dominates.

The physical picture that we can ascribe to these two notions is that of a sphere of
radius r (the considered scale) much smaller than the scales that this sphere explores.
The physical properties of the mixing in this sphere are (locally) homogeneous and
isotropic; such scales, which could be thought of as ‘rapid’, are characterized by local
homogeneity and isotropy. On the other hand, the large scales, which may be viewed
as ‘slow’, are characterized by a global non-homogeneity.

The fundamental difference between grid turbulence and other (shear) flows is the
fact that all even moments of temperature, as well as velocity, are not stationary in
decaying flows, but evolve continuously in the streamwise direction x1. In continuous-
injection flows (group (a), § 1), all the moments are nearly stationary so that their
time, or x1 evolution, can be neglected, as in Yaglom’s equation (1.1).

We emphasize here that, for the simplest flow in group (b), it is necessary to take
into account the decay of 〈(∆θ)2〉 in order to close the relations correctly. Note also
that, for group (a), the generalization of Yaglom’s equation could be carried out,
though using a different approach. The starting point remains the heat transport
equation, but with a ‘source term’ Gu, as explained in Pumir (1994a), and proper
account taken of the stationarity of all moments and of the particular flow geometry.
An appropriate form of equation (2.1) could be deduced by replacing the time decay
of the temperature variance by diffusion along the anisotropic direction, i.e. the mean
temperature gradient direction. The generalized form of Yaglom’s equation would
then take explicitly into account the presence of the mean temperature gradient.
Therefore, it is not possible to write a ‘unified’ form for the supplementary terms in
Yaglom’s equation for different flow categories (groups (a) and (b)). The significance
of these terms depends on the nature of the large scales injecting the energy, which
will obviously differ for the different flow categories.

We now turn our attention to (3.8), written for simplicity as

4
3
r∗ = A+ B + S ∗, (3.10)

where A is the turbulent transport term (A = −〈∆u(∆θ)2〉/(uKθ2
K)), B is the small-

scale diffusion term (B = 2k(d/dr∗)〈(∆θ)2〉/(〈εθ〉η2)), and S∗ represents the additional
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source term, in its dimensionless form. The term S∗ is estimated as

S∗ = − U1

〈εθ〉
1

r∗2

∫ r∗

0

y∗2
∂

∂x1

〈(∆θ)2〉dy∗.

Now, in order to obtain the value of (∂/∂x1)〈(∆θ)2〉, we need an additional assumption,
that the temperature second-order moments are ‘self–similar’ for different positions
behind the grid. Mathematically, we decompose

〈(∆θ)2〉(r, x1) ≡ f(r) g(x1),

where f(r) is the ‘shape’ function, and g(x1) is the ‘decaying’ part of the second-order
moments. This assumption has some experimental support, given that the turbulent
Reynolds number Rλ is approximately constant with respect to x1. Specifically, the
two functions are

f(r) ≡ 〈(∆θ)2〉/〈θ2〉 = constant;

g(x1) ≡ 〈θ2〉.
Next, we evaluate

∂

∂x1

〈(∆θ)2〉 =
〈(∆θ)2〉
〈θ2〉

∂

∂x1

〈θ2〉,
and, since the variables x1 and y (which represents a separation) are independent, we
write

S∗ = − 1

〈εθ〉
[
U1

∂

∂x1

〈θ2〉
]

1

r∗2

∫ r∗

0

y∗2
〈(∆θ)2〉
〈θ2〉 dy∗.

Using relation (2.1),

S ∗ = 2
1

r∗2

∫ r∗

0

y∗2
〈(∆θ)2〉
〈θ2〉 dy∗,

so that differentiation of 〈θ2〉 with respect to x1 is avoided, thus improving the estima-
tion of S∗. The uncertainty of this latter quantity essentially reflects the uncertainty
in verifying (2.1).

All the terms in (3.10) are shown in figure 2. As previously noted, Yaglom’s
equation, which expresses the balance A+ B = 4

3
r∗, is verified for scales smaller than

5η. The additional source term S∗ inherits somewhat the behaviour of 〈(∆θ)2〉 which
features in the integrand of (3.9). The balance between 4

3
r∗ and A+B+S∗ is quite good

for r∗ 6 200, underlining the fact that the decay is crucial in this type of flow. In a
different context, it validates, to a good approximation, the three-dimensional isotropy
of the passive scalar field in grid turbulence. The behaviour of A for r∗ > 200 suggests
that the record duration may be insufficient for the convergence of the mixed-order
moments.

The following remarks can also be made in connection with the large-scale agree-
ment of (3.10). For scales larger than about 200η, the spatial correlations vanish, so
that some of the quantities are stationary in r∗. A is approximately zero, whereas the
temperature second-order moment has a constant value,

〈(∆θ)2〉 = 2〈θ2〉.
An immediate consequence of these observations is that, for r∗ � 200, or r∗ → ∞,
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Figure 2. Verification of (3.10) at x1/M = 70: �, the turbulent transport A (the continuous line is
a polynomial interpolation of these values); ?, the small-scale diffusion term B (the dotted line is a
polynomial interpolation), the straight line is 4

3
r∗; �, the source term S∗; 4, A+ B; •, A+ B + S∗.

(3.10) reduces to

4
3
r∗ = S∗ = − 1

〈εθ〉
U1

r∗2
lim
r∗→∞

∫ r∗

0

y2 ∂

∂x1

〈(∆θ)2〉dy

= − 1

〈εθ〉
U1

r∗2

∫ 200

0

y2 ∂

∂x1

〈(∆θ)2〉dy − 1

〈εθ〉
U1

r∗2

∫ r∗

200

y2 ∂

∂x1

〈(∆θ)2〉dy

≈ − 1

〈εθ〉
U1

r∗2

∫ r∗

200

y2 ∂

∂x1

〈(∆θ)2〉dy.
Since, for r∗ > 200, 〈(∆θ)2〉 ≈ 2〈θ2〉, we finally have

4
3
r∗ = S∗ ≈ − 2

〈εθ〉
U1

r∗2

∫ r∗

0

y2 ∂

∂x1

〈θ2〉dy. (3.11)

Since 〈θ2〉 does not depend on r∗, and x1 and r∗ are independent variables, we
obtain

4
3
r∗ = − 2r∗

3〈εθ〉U1

∂〈θ2〉
∂x1

, (3.12)

which is identical with (2.1). This calculation highlights the link between the large-
scale verification of (3.10) and (2.1), the slight disagreement observed in figure 2
for the large scales reflecting the uncertainty (±10%) in verifying (2.1). It should
be emphasized that grid turbulence, which allows such a simple verification of the
equation for 〈εθ〉, is the only flow which permits Yaglom’s equation to be generalized
in such a simple manner.

Note here that the large-scale agreement we obtain with (3.10) is essentially linked
to the validity of (2.1) in grid turbulence, for which only local homogeneity is
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Figure 3. Verification of (3.14) at x1/M = 70: �, the turbulent transport A (the continuous line
is a polynomial interpolation); ?, the small-scale diffusion term B (the dotted line is a polynomial
interpolation), the straight line is 4

5
r∗; �, the source term S ∗u1; 4, A+ B; •, A+ B + S ∗u1.

required (the ‘divergence’ advective term 〈∇x(uθ2)〉 disappears only because of local
homogeneity). Terms which are sensitive to local isotropy (mainly the turbulent
transport term A, but also term B), are not present at these large scales. On the
contrary, terms which depend on local homogeneity only are present at these large
scales.

A generalized form of Kolmogorov’s equation (Monin & Yaglom 1975)

− 4
5
〈ε〉r = 〈(∆u1)

3〉 − 6ν
d

dr
〈(∆u1)

2〉 (3.13)

can be obtained using a procedure similar to that which led to (3.8). After applying
homogeneity and isotropy, all the terms can be written using only ∆u1. Acknowledging
that, for grid turbulence, second-order moments of ∆u1 are not stationary, we obtain
an additional term:

Su1 = −3
U1

r4

∫ r

0

y4 ∂

∂x1

〈(∆u1)
2〉dy.

The term Su1 is computed in a similar manner to S . The generalization of (3.13) is then
written in the same way, in the dimensionless form (using Kolmogorov characteristic
variables)

4
5
r∗ = A+ B + S ∗u1. (3.14)

Figure 3 reflects the very good agreement we obtain. Note that Kolmogorov’s equation
is also verified up to 5η only, and that the additional terms in (3.10) and (3.14) are
similar, apart from the factors y2 and y4, a difference which is just a direct consequence
of the different expressions for the operators (3.5) when applied to a scalar and a
vector field. The departure from (3.10) at large r (figure 2 and possibly to a smaller
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Figure 4. Verification of (3.14) for Mydlarski & Warhaft’s data. Same symbols as in figure 3.
Rλ = 99: smaller symbols; Rλ = 448: bigger symbols.

extent figure 3) may reflect a departure from global isotropy. In this context, we
have verified that, at large r, 〈(∆u1)

2〉 and 〈(∆u2)
2〉 are consistent with the measured

anisotropy, namely 〈u2
1〉/〈u2

2〉 ≈ 1.6.
As emphasized by Frisch (1995, § 6.2.5), in order to derive the four-fifths law (in

Kolmogorov’s equation), several limits are taken, in this order:
t→∞ yielding a statistical steady state;
ν → 0 to eliminate any residual dissipation in the IR;
r → 0 to eliminate the direct influence of the large-scale forcing. Kolmogorov’s

equation can thus be written, in the IR, using our notation, as

lim
r→0

lim
ν→0

lim
t→∞
−〈(∆u1)

3〉
r

= 4
5
〈ε〉. (3.15)

The approach proposed herein generalizes (3.15), by eliminating the first limit,
limr→0 (which is in fact the last limit in treating the third-order moments). The large-
scale influence is therefore taken into account. In the same spirit, we can say that our
general approach, i.e. (3.14), could be written as

lim
ν→0

lim
t→∞
−〈(∆u1)

3〉
r

+
Su1

r
= 4

5
〈ε〉. (3.16)

A final comment pertains to the term ‘stationarity’ which here has to be understood
as the stationarity of all the statistics in a fixed reference frame situated at a certain
position x1/M. Thus, the decay is identified here with a large-scale non-homogeneity,
as discussed previously. The same comment applies to Yaglom’s equation.

In order to analyse the influence of the Reynolds number Rλ, we have plotted on
figure 4 the velocity data obtained by Mydlarski & Warhaft (1996), for Rλ = 99 and
Rλ = 448, using an active grid. The influence of Rλ on A and B, which are associated
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Figure 5. Ratio 4
5
r∗/S∗u1 for the present data and those of Mydlarski & Warhaft (1996). Present

data: �, Rλ = 66. Mydlarski & Warhaft’s data: �, Rλ = 99; +, Rλ = 134; ◦, Rλ = 319; ?, Rλ = 448.
Arrows indicate the value of l∗ for each Rλ (except for Rλ = 134, for which l∗ has almost the same
value as for Rλ = 99).

with −〈(∆u1)
3〉 and 〈(∆u1)

2〉, is well known (e.g. Mydlarski & Warhaft 1996; Yeung &
Zhou 1997). The new term, Su1, has a markedly stronger influence on IR scales when
Rλ is smaller. In particular, for Rλ = 448, where −〈(∆u∗1)3〉 is very close to 4

5
r∗ for

scales as large as about 200η, Su1 vanishes rapidly. The quality of agreement between
the new relation, (3.14), and all the data sets is essentially independent of Rλ.

Figure 5 expresses more quantitatively the relative importance of S ∗u1, in the context
of (3.14), with respect to r∗ and Rλ. The ratio 4

5
r∗/S∗u1 is shown for the five data

sets. For all Reynolds numbers, the new term is about one half of 4
5
r∗ for r = l

(l, the integral length scale, was estimated, as in Mydlarski & Warhaft 1996, from
l = 0.9u′31 /〈ε〉). However, larger contributions are obtained for smaller Reynolds
numbers, since the maximum level attained by −〈(∆u∗1)3〉 is then significantly smaller
than 4

5
r∗ (as already observed in figure 3, for Rλ = 66).

It is worth pointing out that, for our passive grid, 〈u2
1〉/〈u2

2〉 ≈ 1.60 whereas, for
Mydlarski & Warhaft’s ‘active grid’, this ratio is about 1.45.

Finally, it should be mentioned that the behaviour of the dynamic field, via
Kolmogorov’s equation, has been extensively examined by Batchelor (1947) and Hill
(1997). In both studies, the non-stationarity of the flow was addressed, but no detailed
development nor verification were implemented. On the other hand, Frisch (1995) has
included a random forcing term, active only at large scales, which is stationary in
time and homogeneous in space. The analogy between Yaglom’s equation and a more
general form of Kolmogorov’s equation was pointed out by Antonia et al. (1997) and
tested in different flows.
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4. Conclusion
A generalized form of Yaglom’s equation has been proposed for thermal grid

turbulence at small Reynolds numbers. The new equation includes an additional
source term, related to the non-stationarity of the second-order moments. Equation
(3.8) is quite well verified, emphasizing the importance of the non-stationarity in
terms of its influence on both the large scales and the inertial range scales. A
generalization of Kolmogorov’s equation is also proposed and verified with the same
degree of accuracy as (3.8). In particular, the present results clearly demonstrate that
deviations from the 4

3
or 4

5
laws cannot be attributed in a straightforward manner, as

is generally done in the literature, to a departure from isotropy. On the contrary, in
grid turbulence, we have shown that an additional large-scale contribution evaluated
within the isotropy constraints closes Yaglom’s and Kolmogorov’s equations with
quite reasonable accuracy.

Note added in proof: Equation (3.14) was also derived by Saffman (1968) starting
from the Kármán–Howarth equation. We became aware of this derivation just before
the proof-reading stage and apologize for this omission.
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